Realising Haldane's vision for a Chern insulator in buckled lattices

نویسنده

  • Anthony R. Wright
چکیده

The Chern insulator displays a quantum Hall effect with no net magnetic field. Proposed by Haldane over 20 years ago, it laid the foundation for the fields of topological order, unconventional quantum Hall effects, and topological insulators. Despite enormous impact over two decades, Haldane's original vision of a staggered magnetic field within a crystal lattice has been prohibitively difficult to realise. In fact, in the original paper Haldane stresses his idea is probably merely a toy model. I show that buckled lattices with only simple hopping terms, within in-plane magnetic fields, can realise these models, requiring no exotic interactions or experimental parameters. As a concrete example of this very broad, and remarkably simple principle, I consider silicene, a honeycomb lattice with out-of-plane sublattice anisotropy, in an in-plane magnetic field, and show that it is a Chern insulator, even at negligibly small magnetic fields, which is analogous to Haldane's original model.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Edge transport in 2D cold atom optical lattices.

We theoretically study the observable response of edge currents in two-dimensional cold atom optical lattices. As an example, we use Gutzwiller mean-field theory to relate persistent edge currents surrounding a Mott insulator in a slowly rotating trapped Bose-Hubbard system to time of flight measurements. We briefly discuss an application, the detection of the Chern number using edge currents o...

متن کامل

Floquet fractional Chern insulators.

We show theoretically that periodically driven systems with short range Hubbard interactions offer a feasible platform to experimentally realize fractional Chern insulator states. We exemplify the procedure for both the driven honeycomb and the square lattice, where we derive the effective steady state band structure of the driven system by using the Floquet theory and subsequently study the in...

متن کامل

Valley-polarized metals and quantum anomalous Hall effect in silicene.

Silicene is a monolayer of silicon atoms forming a two-dimensional honeycomb lattice, which shares almost every remarkable property with graphene. The low-energy structure of silicene is described by Dirac electrons with relatively large spin-orbit interactions due to its buckled structure. The key observation is that the band structure is controllable by applying electric field to silicene. We...

متن کامل

Orbital analogue of the quantum anomalous Hall effect in p-band systems.

We investigate the topological insulating states of the p-band systems in optical lattices induced by the on site orbital angular momentum polarization, which exhibit gapless edge modes in the absence of Landau levels. This effect arises from the energy-level splitting between the on site p_{x}+ip_{y} and p_{x}-ip_{y} orbitals by rotating each optical lattice site around its own center. At larg...

متن کامل

Two-dimensional Topological Crystalline Insulator Phase in Sb/Bi Planar Honeycomb with Tunable Dirac Gap

We predict planar Sb/Bi honeycomb to harbor a two-dimensional (2D) topological crystalline insulator (TCI) phase based on first-principles computations. Although buckled Sb and Bi honeycombs support 2D topological insulator (TI) phases, their structure becomes planar under tensile strain. The planar Sb/Bi honeycomb structure restores the mirror symmetry, and is shown to exhibit non-zero mirror ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 3  شماره 

صفحات  -

تاریخ انتشار 2013